AD-A 66
IWWHWI@MM

¥l o
Defence  nationale

EFFECTS OF IMBALANCES AND
DC OFFSETS ON UQ DEMODULATION (U)

Jim PY. Lee

o~

R

DEFENCE RESEARCH ESTABLISHMENT OTTAWA
REPORT NO. 1148

Canad H Decembe&:asvgﬁ
B3 5 20 068 93-11370
TR Ao

/""" '"-:N\: .
. - ~,.‘



el oo
Detence nationaie

EFFECTS OF IMBALANCES AND
DC OFFSETS ON /Q DEMODULATION (U)

by

Jim P.Y. Lee
Radar ESM Section
Electronic Warfare Division

DEFENCE RESEARCH ESTABLISHMENT OTTAWA
REPORT NO. 1148

PCN December 1992
o11LB Ottawa




ABSTRACT

The effects of imbalances and DC offsets, in an I/Q demodulator, on the
demodulation of radar signals are addressed in this report. Three normalized parameters,
namely the peak—to—peak—ripple to mean ratio, phase error and normalized instantaneous
frequency deviation are used to characterize distortions introduced on the envelope, phase
and instantaneous frequency respectively. The effect on the distortions due to aliasing and
an approximation used in deriving the instantaneous frequency in a discrete~time
processor, is also analyzed.

When there are imbalances and DC ofisets, a bias is produced on both the
demodulated envelope and phase. AC ripples with frequency components which are
multiples of the baseband frequency are also generated on all of the three demodulated
waveforms. Since the demodulated waveform bandwidth is usually much narrower than
the instantaneous bandwidih of tie I/Q demodulator and at high baseband frequency, the
%jlgh frequency components of the distortions can be effectively reduced by low—pass

tering.

RESUME

Ce rapport contient une analyse des effets des asymétries et des niveaux de
courant continu sur un démodulateur en quadrature de phase. Les disiorsiors de
I’enveloppe, de la phase et de la fréquence instantanée de signaux radar, sont analysées,
respectivement, a 'aide de trois paramétres normalisés, soient le rapport, créte—a—créte,
des fluctuations & la moyenne de ’enveloppe, l’erreur de phase et les changements de
fréquence instantanée. On y analyse aussi I'impact sur les distorsions du repliement
spectral et des approximations utilisées dans la détermination de la fréquence instantanée
par un systéme de traitement a échantillonnage temporel.

Les asymétries et les décalages de courant continu produisent un biais qui
s’ajoute a ’enveloppe démodulée et a la phase. Des fluctuations de courant alternatif
contenant des composantes spectrales situées aux multiples de la fondamentale sont
générées pour les trois signaux démodulés. Pour les applications de guerre électronique, la
bande passante du démodulateur en quadrature est habituellement beaucoup plus grande
que la bande passante du signal démodulé. Lorsque la fondamentale du signal est grande et
comparable 3 sa largeur de bande de modulation, les composantes & haute fréquence de la
distorsion peuvent €tre atténuées efficacement par un filtre passe—bas.
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EXECUTIVE SUMMARY

Due to the increasing density and complexity of radar signal waveforms, it is
becoming difficult to sort out and identify each radar emitter uniquely using conventional
signal parameters such as pulse width, radio frequency (RF), amplitude and pulse
repetition frequency. As a result, in electronic warfare applications, there is a requirement
for a radar Electronic Support Measures (ESM) receiver to measure precisely the
modulation characteristics of radar signals and to provide additional parameters on the
modulation waveform such as envelope, phase and instantaneous frequency which can be
used to identify unambiguously each type of radar emitter. With the advent of fast A/D
converters and high~speed digital signal processing technologies, I/Q demodulators have
been developed which can measure accurately the modulation characteristics of radar
signals.

There are different approaches in the implementation of an 1/Q demodulator. The
most common one is the conventional I/Q demodulator where the generation of the
in—phase and quadrature components of a signal is implemented using analog components.
The in—phase and quadrature signals are then digitized and processed to extract the
modulation characteristics of the signal. The attractive features of this approach are its
wide instantaneous bandwidth and simple implementation. However, there are amplitude
and phase imbalances between the two channels and DC offset in each channel, which in
turn can introduce systematic errors to the measurement.

Other digital approaches of directly eliminating the mismatches have also been
proposed. In these approaches, the splitting of the input signal into its in—phase and
quadrature components is carried out in the digital domain by passing the digital signal
through digital Hilbert transform filters. However, the computational load of the digital
processor is increased due to the requirements of the digital filtering operations and some
distortion is also introduced due to finite word length effects and the finite order of the
digital filters. The magnitude and type of mismatches depend on the particular scheme
implemented. In general, the imbalances and DC offsets can be made much less than the
conventional I/Q demodulator implemented using commercial quadrature mixers.

No matter which approach is used, some form of mismatch does exist in the
generation of the in—phase and quadrature signals. This will inevitably affect the accuracy
of the demodulated information.

The purpose of this report is two—fold. The first objective is to analyze the effects of
imbalance errors and DC offsets on the demodulated characteristics. Different cases in
terms of the imbalances and DC offsets are used to illustrate the distortions introduced.
The second objective is to present simple techniques which can be used to reduce the
distortions introduced by the imbalances and DC offsets.

The effects of imbalances and DC offsets, in an I/Q demodulator, on the
demodulation of radar signals are addressed. Three normalized parameters. namely the
peak—to—peak—rtipple to mean, phase error and normalized instantaneous frequency
deviation are used to characterize distortions introduced on the envelope, phase and
instantaneous frequency respectively. The effect on the distortions, due to aliasing and an
approximation used in deriving the instantaneous frequency in a discrete—time processor, is
also analyzed.




When there are imbalances and DC offsets, a bias is produced on both the
demoduiaied envelope and phase. AC ripples with frequency components which are
multiples of the baseband frequency are also generated on all of the three demodulated
waveforms. In EW applications, the video or modulation bandwidth of the signal is usually
small in comparison to the instantaneous frequency bandwidth of the I/Q demodulator. As
a result, when the signal is down—converted to a baseband frequency which is larger than
the modulation bandwidth, the frequency components of the distortions can be reduced by
low—pass filtering. The technique of using a moving average has been shown to be effective
to attenuate the ripples caused by the mismatches and with minimal effect or both the
demodulated envelope and instantaneous frequency.
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1.0 INTRODUCTION

Due to the increasing density and complexity of radar signal waveforms, it is
becoming very difficult to sort out and identify each radar emitter uniquely using
conventional signal parameters such as pulse width, radio frequency (RF), amplitude and
pulse repetition frequency. As a result, in electronic warfare applications, there is a
requirement for a radar Electronic Support Measures (ESM) receiver to measure precisely
the modulation characteristics of radar signals and to provide additional parameters on the
modulation waveform such as amplitude, phase and frequency which can be used to
identify unambiguously each type of radar emitter. With the advent of fast A/D converters
and high—speed digital signal processing technologies, it is possible to develop digital
microwave receivers which can meet this requirement [1}.

A simple conventional in—phase/quadrature (I/Q) demodulator which can measure
accurately the envelope, phase and instantaneous frequency of radar signals is shown in
Fig. 1. The attractive features of this architecture for radar ESM applications are: (i) wide
instantaneous bandwidth because the negative and positive frequencies with respect to the
local oscillator frequency can be distinguished, and (ii) simple algorithms for the extraction
of modulation characteristics can be used so that nearly real—time results can be obtained.

Wide instantaneous bandwidth is important for a number of reasons. In EW
applications, the signal frequency bandwidth can be large and 500 MHz is not uncommon
[2]. In addition, if it is required to measure fine modulations of narrow pulses, a wide
instantaneous bandwidth with minimal group delay variations is also needed. Furthermore,
the frequencies of the signals of interest are usually unknown and they may scatter in a
much broader frequency band than the bandwidths of the signals. As a result, in this case
the instantaneous bandwidth of an I/Q demodulator is usually designed to be much wider
than the modulation bandwidths of the signals.

The conventional I/Q approach has its own problem. Because the splitting of the
signal into its in—phase and quadrature components is implemented using analog
components, there are amplitude and phase imbalances between the two channels and DC
offset in each channel, which in turn can introduce systematic errors to the
measurement[3—6]. Quadrature mixers are commercially available, however they exhibit
relatively large amplitude and phase imbalances[6,7]. On the other hand, much better
matching characteristics can be obtained by using custom—matched quadrature mixers[6].
The imbalances and DC offsets of I/Q demodulators can aiso be reduced in the processing
by using calibration and compensation techniques[6,8]

Other approaches of directly eliminating the mismatches have been proposed
recently [9—121). In these approaches, the bandpass signal is either directly sampled or is
first down converted to a lower intermediate frequency (IF) before it is sampled. The
splitting of the input signal into its in—phase and quadrature components is carried out in
the digital domain by passing the digital signal through digital Hilbert transform filters.
However, the computational load of the digital processor is increased due to the additional
requirements of the digital filtering operations and some distortion is also introduced due
to finite word length e%fects and the finite order of the digital filters. The magnitude and
type of mismatches depend on the particular scheme implemented. In general, the
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imbalances and DC offsets can be made much less than the conventional I/Q demodulztor
implemented using commercial quadrature mixers.

No matter which approach is used, some form of mismatch does exist in the
generation of the in—phase and quadrature signals. This will inevitably affect the accuracy
of the demodulated information.

In EW applications, the envelope, phase and instantaneous frequency of the signal
modulation are measured directly, and consequently, the effects of imbalances and DC
offsets on the demodulated waveforms as a function of time are of interest. As a result, the
analysis carried out in this report is focused on the time domain effects which are different
from the conventional approach [3—5] where the effects are characterized in the frequency
domain in terms of the relative ratio of the demodulated signal frequency to its image
frequency. The analysis given in this report is based mainly on the use of the conventional
I/Q demodulator. For other digital approaches, the generation of the in—phase and
quadrature components may be different, but the effects of imbalances and DC offsets on
the demodulated signals are equally applicable.

Thea purpose of this report is two—fold. The first objective is to analyze the effects of
imbalan. . errors and DC offsets on the demodulation characteristics. Different cases in
terms of the imbalances and DC offsets are used to illustrate the distortions introduced.
The second objective is to present simple techniques which can be used to reduce the
distortions introduced by the imbalances and DC offsets.

2.0 I/Q DEMODULATION

An incoming RF signal is usually down—converted to an IF signal before it is applied
to tlfxe 1/ Qfdemodulator. The IF signal applied to the I/Q demodulator can be expressed in
the form o

s(t) = a(t) cos[w t + 4(t)] (1)

where a(t) is the amplitude or envelope, v is the IF angular carrier frequency and ¢(t) is

the phase function of the signal. In a conventional 1/Q demodulator as shown in Fig. 1,

the signal is first bandpass filtered and then equally power—divided into two paths. The

siinal in each path is then mixed down to baseband by the use of a local oscillator signal.

The two local oscillator signals are derived from the same source, but are 90 degrees out of
has:ej The resultant in—phase and quadrature baseband signals after the low—pass filter
LPF) are,

Si(t) = K/2 a(t) cos[ (v — wio)t + 4(t) — 7] = K/2 a(t) cos[4(t)]
(2)
Sq(t) = K/2 a(t) sin[f(t)] (3)
respectively, where K is the net gain in each path , v, is the angular frequency of the local

oscillator with initial phase 7, §(t) is the phase function of the baseband signal and a
constant delay introduced in each path has been neglected. In this ideal case, the two

and




channels have been assumed to be perfectly matched in amplitude, 90 degrees out of phase
and with no DC offsets.

The instantaneous power of the envelope of the input IF signal is simply related to
its in—phase and quadrature baseband components by

a%(t) = 4/K* [ Si(t) + Sq(t)], (4)
the signal phase function is given by
¢(t) = B(t) — (¢v,— w1t + 7
= tan! [Sq(t)/81(t)] — (v, w10}t + 7 (5)

and the instantaneous angular frequency is
2ri(t) = 44() - & [ tan™! [Sq(t)/S(t)] ] — (0= v10).
(6)

The in—phase and quadrature baseband signals are usually sampled and quantized at
th=nTs+ T, where Ts is the sampling interval, T  is the initial time and n = 0,1,2,... .

In this case, the sampled instantaneous angular frequency is then approximately given by

2#f(ta) = [4(t) = 4(ta-)] /Ty 7

3.0 AMPLITUDE AND PHASE IMBALANCES AND DC OFFSETS

In the implementation of the I/Q demodulator there will be differential gain, DC
offsets and (phase deviation from the ideal 90 degrees between the two channels {4].

Equations (2) and (3) can then be rewritten in a more general form as

Si(t) = Ki/2 a(t) cos[B(t) + 4i] + aio (8)
and

Sq(t) = Kq/2 a(t) sinff(t) + ¢q ] + aqo (9)

respectively, where aj, and ago are the amplitude DC offsets, K; and K are the gains, and
¢i and ¢q are the phases of the in—phase and quadrature channels respectively. aiq, aqo, Ki,
Kq ,¢i and ¢4 are in general a function of frequency. For narrow—band signals, they can be
assumed to be approximately constant.

There are four basic components on the mismatches, namely amplitude imbalance,
phase imbalance and DC offsets in the in—phase channel and quadrature channel.
Depending on the type of I/Q demodulator or the digital approach used, the relative
magnitude of the four mismatch components can vary. In the conventional 1/Q




demodulator, if commercial quadrature mixers are used, all four components can be 'arge.
If a custom—matched quadrature mixer is used, ihe imbalances can be quite small. If the
DC offsets are stored and subtracted digitally from the in—phase and quad:ature signals in
the processing, then DC offsets are negligible as compared to the imhbalances. In the digital
approach, if one Hilbert transformer is used in one of the channels in generating the
quadrature component[9], only amplitude imbalance and one DC offset are present. If two
linear—phase FIR bandpass filters with frequency responses identical in amplitude but 90
degrees shifted in phase, the DC offsets will be eliminated and the amplitude and phase
imbalances are then determined by the finite number of bits in the A/D converters and the
sampling jitter [12].

The general case in which zll the imbalances and DC offsets are present is discussed.
In addition, other specific cases are also analyzed in detail. The specific cases presented in
this report are :
i)* Amplitude and Phase Imbalances Only,
i1) Amplitude Imbalance Only,
ii1) Phase Imbalance Only,
iv) DC Offsets Only and
'v) Amplitude and DC Offset Only
3.1 Envelope Measurement

From Eqgs.(8) and (9), the instantaneous power of the envelope of the baseband
signal can be shown to be

Si(t) + Sq(t) = [a(t)K11%/4 { 1/2 + {aio/[2(t)Ki/2]}°+ R?/2 + {aqo/[a(t)Ki/2]}?
+ [2 aio/[a(t)Ki/2] cos[a_(t)] + 2 R aqo/[a(t)K/2] sinfa_(t) + w}
+ [;/2 cos[2a,(t)] — R?/2 cos[2a_(t) + 244 ]]]
(10)
where a_(t) = A(t) + 4; (1)

is the input phase function of the basehand signal with a constant phase offset ¢;.

The calculated envelope has been expressed in terms of relative and normalized
parameters, with

as the amplitude imbalance ratio,
Ad = (#q ~ $1) (13)




as the phase imbalance,
aiof[a(t)Ki/2] (14;

and

aqo/[a(t)K/2] (15)
as the normalized DC offsets of the in—phasc and quadrature channels respectively. It has

also been expressed as a product of the undistorted envelope term {[a(t)Ki]?/4} and a sum
of other terms which are generated by the imbalances and DC offsets. When the two
channels are perfectly matched, the sum of all the terms inside the braces is unity. By

dividing both sides of Eq.(loz‘ by {[a(t)K;]?/4}, the normalized envelope is simply given by
the terms inside the braces. A DC term other than unity indicates a change in magnitude
of the undistorted envelope while an AC term also indicates a change in shape. In the
frequency domain, the spectrum of the undistorted envelope is affected only in magnitude
by the DC terms while the spectrum is also modified and shifted by the AC terms. The
resultant normalized envelope is a summation of all the DC and AC components.

If the input signal is a CW signal, then there are basically three groups of terms
inside the braces; DC terms, fundamental baseband signal frequency terms and second
harmonic baseband signal frequency terms. The DC terms are functions of the amplitude
imbalance and DC offsets, independent of phase imbalance. A DC offset introduces a
fundamental harmonic frequency which has the same frequency as the baseband signal
Other errors only affect the magnitude of these ripples. Without DC offsets, ripples of the
fundamental fre juency disappear completely. Ripples with a second harmonic frequency
appear only when there is an amplitude or phase imbalance. When the twn channels are
matched, all the ripples disappear and the terms inside the braces is unity.

3.2 Phase and Instantaneous Frequency Measurement

Using Eqs.(8) and (9), the phase of the baseband signal is given by
a(t) = tan"[Sq(t)/Si(t)]

= tan™ { R [ sinfa_(t)] cos(4¢) + cos[a _(t)] sin(4¢) + aqo/[a(t)Kq/2}]
/ [ cosla, (4)] + aso/ [a(t)K: /2}]} (16)

where the argument has also been expressed in terms of relative and normalized
parameters. The only exception is that the DC offset {aqo/[a(t)Kq/2)]} in the quadrature
channel is normalized by the gain in the quadrature channel.

The deviation in measurement from the case of an ideal demodulator is emph- ~ .d
in this analysis. The phase error is defined by the difference between the measured phase
function and the input phase function of the baseband signal as




sa(t) = a(t) —a(1) (17)

For a specific set of imbalances and DC offsets, the phase error can be fully characterized
by plotting aa(t) over an input phase change of 27 radians. The measured phase value
[a(t)] is then obtained from Eq.(17) once the phase function of the input signal is known. I
the input signal is a CW signal, the phase is linearly proportional to time and an input
phase change of 2r radians simply corresponds to one period of the signal. It is to be noted
that the imbalances and DC offsets are usually a function of frequency.

The measured instantaneous frequency deviation from the input baseband signal is
then obtained by differentiating Eq.(17) with respect to time. Hence,

d(aa(t)]  daa(t)] 8 (t)]
gt e (U] ot (18)

where d[aa(t)]/d[a (t)] is the partial derivative of the measured phase change with respect

to the input phase and is dimensionless. It is also a very useful parameter in characterizing
the instantaneous frequency deviation due to the imbalances and DC offsets. This
parameter is referred to as the normalized instantaneous frequency deviation in this report.
By substituting Eq. (16) into Eq.(17) and taking the partial derivative with respect to the
input phase, the general expression for the normalized instantaneous frequency deviation
can be shown as

daa(t)] ,
Ao 1] R [cos(M) + siafa_(t)] aqo/[2(t)Kq/2] + cos{a (t) + 44 aao/{a(t)Ki/%]

/

——t——

[cos{ao(t)} + aio/[a(t)Ki/2]] g R"’[sin[ao(t) + 0]+ aqo/[a(t)Kq/Q] 2} ~1
(19)

For a given set of imbalances and DC offsets, the normalized frequency deviation is
completely determined by a plot of [aa(t)]/d[a_(t)] over an input phase change of 27

radians. The measured frequency deviation from the input signal is determined by

multiplying the normalized frequency deviations by the instantaneous frequency of the

input signal at the baseband frequency as given in Eq.(18). If the imbalances and DC

offsets are about the same, independent of IF frequency, the measured frequency error due

g? the ripples can be minimized by choosing an IF signal which gives the lowest baseband
equency.

40 AMPLITUDE AND PHASE IMBALANCES ONLY

When there are only amplitude and phase imbalances between the in—~phase and
quadrature channels, the instantaneous power of the envelope of the baseband signal
[Eq.(10)], can be simplified to




Si¥(t) + S3(t) = [a(i)Ki]*/4 { 1/2 + R?/2
+1/2 cos[2a, ()] ~ R?/2 cos{2{a_(t) + A¢]}} (20)

Inside the braces, there are DC and AC ripple terms, with the latter having a frequency
twice that of the baseband frequency. Rewriting the AC ripple terms separately, we have

Ripple = 1/2 cos[2a (t)] — R*/2 cos{2{a_(t)+ 44} (21)

The locations of the peak and null of the rippies can be found by taking the
derivative of Eq.(21) with respect to a_(t) and equating the resuit to zero. Therefore,

a (t) = [tan"(1/A)]/2 or
= [cos“[ AJ(1+A2)Y 2]] /2 (22)

where A = [ 1 — R cos(2 44 )] /[ R2 sin(2 44 )} (23)

The location of the peak or null depends on the sign of A. The peak and null
locations are separated by 180 degrees. Inserting Eq.(22) into Eq.(21) and making use of
Eq.(23), the value of the peak or null ripple is reduced to

Peak or Null Ripple = ( 1+ RY—2 R?cos(2 A¢)] /2 /2 (24)

The shape of the envelope is distorted by the ripples and the magnitude of the
ripples is a function of both the amplitude and phase imbalances. The mean of the ripples
is zero and since the magnitude of the peak equals the null, the peak—to—peak variation of
the ripples is simply twice of that given in Eq.(24). The mean of the envelope [Eq.(20)] is

1/2 + R?/2 which is only a function of the amplitude imbalance. In practice, the amplitude
imbalance is small and R is close to unity. As a result, the mean of the undistorted
envelope is only slightly affected. Therefore, the ratio of the peak—to—peak variation of the
ripples to the mean of the envelope is given by

Peak—to—peak Ripple/mean

- lz[ 1+R{-2R? cos(2A¢)] V2| /(14 RY (25)

This simple ratio gives a relative measure on the AC ripple distortion introduced by
the imbalances on the signal envelope and can be measured readily. When R is replaced by
1/R or when R is expressed in terms of + dB, the ratio of the peak—to—peak ripple to the
mean remains the same. This ratio is also symmetrical with respect to the phase imbalance
as indicated by the cosine function. This is expected because the magnitude of the
systematic errors should be independent of the choice of the reference channel. A plot of
the ratio of the peak—to—peak ripple to mean is plotted in Fig.2 as a function of amplitude
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and phase imbalances. For A¢ small and as R gets larger, the ratio will eventually
approach the maximum limit of 2.

The RMS value of the ripples to the mean can also be obtained directly by using the
simple fact that for a sinusoidal wave, the RMS value is simply equal to the peak value
divided by the square root of 2.

When there are only imbalances present in the I/Q demodulator, the phase error as
defined by Eq.(17) can be simplified to

sa(t) = tan -1[ R cos(4¢) {tana (t)] + tan(M)}] —a,(t) (26)

The argument is characterized by an offset [tan(44)] and a scaling factor [R cos(44)].
When a_(t) equals — A4, the phase error is A¢.

The locations of the zero—crossings in the principal branch | [a_(t)| ¢ 90°] is
obtained by setting Eq.(26) to zero and then solving for [a_(t)] to yield

[a(t)] = tan -I[ Rsin(A4)/ [ - R cos(A¢)]] (27)

For R cos(A4) # 1, one of the zero—crossings is located in the range of ao(t)l < 90°.

The other zero—rossings can also be found directly from Eq.(26) by letting a_(t) = + 90°
for R cos(44) # 0.

Because the tangent function is periodic and if there are three zero—crossings over
the range of 180 degrees, the period of the phase error as a function of ao(t) must be half

that of the input phase cycle. As a result, for a sinusoidal input signal the phase error
introduced by the imbalances is not purely sinusoidal, but with a fundamental frequency
component which is twice that of the input baseband frequency.

For R cos(4¢) = 1, the zero—crossings are located only at a_(t) = + 90°. The phase

error is of the same sign of the phase imbalance and the period of the phase error as a
function of a_(t) is also half that of the input phase cycle.

The normalized instantaneous frequency deviation as given by Eq.(19) can be
simplified to

8[aa(t))/d[a (1)) = R cos(A¢)/[ cos?[a(t)] + R? sin%[a(t) + A¢]] ~1
(28)

The maximum and minimum locations of the phase error are obtained by setting the
derivative [Eq.(28)] to zero. Hence,

10




ta.n’[ao(t)][ R cos(A¢) — R? cos2(A¢)]
- tan[ao(t)][ 2 R? cos(A¢) sin(A¢)] + Rcos(Ag) —1 ~R?sin?(A¢) = 0 (29)

which is of quadratic form and the solutions can be found readily. Since the period of the
phase error is half that of the input phase cycle, one solution is the maximum location
while the other is the minimum.

Since the phase error distribution is no longer purely sinusoidal over an input phase
change of 27 radians, its characteristics are more suitably described by the RMS, mean and
peak—to—peak parameters. The three parameters of the phase error as a function of
amplitude and phase imbalances are plotted in Figs. 3(a) to 3(c). The RMS and
peak—to—peak values are only a function of the absolute value of the phase imbalance
because the sign of the phase imbalance only changes the sign of the offset, not the scaling
factor in Eq.(26). When R is expressed in dB, the peak—to—peak value is also symmetrical
to R = 0 because when R is replaced by 1/R, the offset will be changed, but the arctangent
function is replaced by its cotangent function. This will only change the shape of the phase
error, not its peak—to—peak value and the mean error is no longer zero. As expected, the

ratio of the RMS value to its peak—to-peak value is no longer equal to 1/ (23/ %) asfora
sinusoidal wave.

The locations of the maximum and minimum instantaneous frequency deviations are
found by differentiating Eq.(28) with respect to a_(t) and equating the result to zero.
Hence

8%aa(t)]/8%a ()] = R cos(Ag) [2 cosla(t)] sinfa,(t)] — 2R sinfa_(t)+ 4]

- cosfa(t) + A¢]] /[ cosfay ()] + R?sinla,(t) + 44] <0
(30)

Therefore
a,(t) = tan "[ R?sin(244)/ [ 1 - R? cos’(2A¢)]] /2 (31)

There are two solutions for the arctangent function over the 360—degree range. After
dividing by two, one will provide the maximum location and the other the minimum within
the 180~degree range.

As can be seen from Eq.(28), the relative shape of the normalized instantaneous
frequency deviation is only a function of the absolute phase imbalance because cos(44) is an
even function of 9. Moreover when R is replaced by 1/R, the relative shape is also not
affected. However, the position of the normalized instantaneous frequency deviation as a
function of ao(t) is a function of both the imbalances. When R # 1 and A4 # 0, the period of

the normalized instantaneous frequency deviation as a function of a_(t) is also half that of
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the input phase cycle. This period is generated by the squared terms of both the cosine and
sine functions. Since the denominator is always positive, the sign of the first term of

Eq.(28) is completely determined by cos(Ag). For cos(A¢) > 0 or (4¢4) < 90 degrees,
dlaa(t) /6{a°(t§] > — 1. For cos(44) < 0 or 180 > (A4) > 90 degrees, 9 Aa(t)]/afao(t)} <—1

The peak—to—peak normalized instantaneous frequency deviation is plotted in Fig. 4
as a function of the imbalances. The ratio of the RMS value to its peak—to—peak value is

approximately equal to 1 /(23/ 2) when the imbalances are small. However, the normalized
instantaneous frequency deviation as a function of a_(t) is not sinusoidal over an input

phase change of 27 radians, and the positive portion is higher in magnitude than the
negative one. In addition, the mean of the normalized instantaneous frequency deviation is
always equal to zero.

4.1 Amplitude Imbalance Only (A4 = 0)

With amplitude imbalance only, the power of the envelope as given in Eq.(20) can be
simplified further to

Si%(t) + Si(t) = [a(t)K]%/4 { [1/2 + R?/2] + [ 1/2 = R?¥/2] cos(2 a (1)) }

(32)

Similar to the general case where there are both amplitu: ! and phase imbalances,
there are also DC terms and AC ripple terms which are of twicc the baseband signal

frequency. The peak—to—peak ripple is simply given by |1 — R?|. The ratio of the
peak—to—peak ripple to mean of the envelope is then given by

Peak—to—peak ripple/mean = 2

I—RZ*/[1+R2] (33)

This special case is illustrated in Fig. 2 by the solid curve. For R close to unity, the
ratio of the peak—to—peak ripple/mean can be shown to be approximately given by |2AR],
where R = 1 + AR. Therefore, when the ratio is plotted as a function of R and expressed in
dB, it is approximately a straight line with intercept point at the origin as shown. When R
is close to unity, the plot is near the origin along the horizontal axis because R is plotted in
logarithmic scale.

The measured phase error as given by Eq.(26) can be simplified further to
sa(t) = tan ~l[ R tan[ao(t)]] —a (t) (34)

Following a similar procedure as given in Section 4.0, the locations of the
Zero—Crossing points are at
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a {t)=0and +90°, forR#1 (35)
o}

As a result when there is an imbalance in amplitude (R # 1), there are three crossing
points over an input phase change of 180 degrees. In other words, the ripple of the phase
error is periodic with a period equal to one half of the period of the input baseband signal.

The normalized instantaneous frequency deviation as given by Eq.(28) can be
simplified further to

dlae(t)]/8a (1)) = R /[ cos¥a,(t)] + R? sin"’[ao(t)]] ~1 (36)

and similarly, the locations of the maximum and minimum phase errors are given by

la ()] = tanlf= 1/ /R ] (37)

To verify whether it is a maximum or minimum, another derivative is taken to
determine its sign. If the second derivative is negative, it is the maximum location,
otherwise it is the minimum. For R > 1, the maximum phase error occurs when

tanfa (t)] = 1/ /R, and the minimum phase error occurs when tanfe_(t)] = -1/ /R .
For R < 1, it is the other way around.

For R > 1, the maximum phase error is obtained by substituting ao(t) back into
Eq. (34) and yields

2a(t)gax = tan "[/’H‘]-— tan "[ l/fR_] (38)

Similarly, the magnitude of the minimum phase error is found to be the same as the
maximum. As a result, the phase error distribution is periodic and symmetrical. The
peak—to—peak phase error is simply twice that of Eq.(38) and is shown by the solid line in
gig.:}ﬁ). For R < 1, the maximum phase error is identical to Eq.(38) when R is replaced

y 1/R.

The locations of the maximum and minimum normalized instantaneous frequency
deviations are found from Eq.(31) to be at [2a (t)] = 0,and + 7, for R # 1 orat a (t) = 0,

and + r/2. Substituting the locations back into Eq.(37), the maximum and minimum of the
normalized instantaneous frequency deviation are R — 1, at a (t) = 0 and 1/R ~1 at o (t)

= + 7/2 respectively. For R > 1, R — 1 is the maximum, and 1/R —1 is the minimum. For
R < 1,1/R —1is the maximum, and R — 1 is the minimum. As a result, when R is
replaced by 1/R, the maximum and minimum deviations are the same. The peak—to—peak
normalized instantaneous frequency deviation is shown by the solid line in Fig.4. It is to be
noted that the absolute maximum is larger than the absolute minimum. In addition, there
is no upper bound as R approaches either 0 or infinity, but there is a lower bound.
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4.2 Phase Imtalance Only (R=1)
When there is phase imbalance only, Eq.(20) is reduced further to
Si¥(t) + S&(t) = [a(t)Kj)%/4 { 1 + sin(44) sin [2a_(t) + A¢]}
(39)
As in the case of amplitude imbalance only, there is a DC term as well as a second

harmonic baseband frequency term. The ratic of the peak—to—peak ripple to mean is
simply given by

Peak—to—peak/mean = |2 sin(A¢)| (40)
Eq.(40) is plotted in Fig. 2 for |A¢| = 0°,0.5°,1.0°, 1.5° and 2.0° at R = 0 dB. For
small A¢, the peak—to—peak/mean ratio is approximately twice the phase imbalance.

The phase error as given by Eq.(26) can be simplified further to

aa(t) = tan "[cos(M) {tan[a_(t)] + ta.n(A¢)}] —a(t) (41)

Now the argument is also scaled by a scaling factor equal to cos(4¢) which is
different from the amplitude imbalance case in two aspects; it is bipolar and is less than
unity. In addition, there is also an offset given by tan(A¢).

The location of the zero—crossing is obtained by setting Eq.(41) to zero and yields
[+]
e (t) = [90" —44/2] for 44/2>0 and
=[-90° + 84/2] for A4/2<0 (42)
Similar to the last two cases, the other two zero—crossing points are located at

a (t) =+ 90°.

The normalized instantaneous frequency deviation as given by Eq.(28) can be
simplified further to

dfaa(t))/dla (t)] = cos(A¢)/[ cos[a_(t)] + sin*fa_(t) + A¢]] -1
(43)

The locations of the maximum and minimum phase errors are determined by
equating Eq.(43) to zero and solving for the value of ¢_(t). The maximum and minimum

phase errors can then be shown as
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aa(t) = tan™ [sin(A«i) 1\/2 cos(A4){1 = cos(34 } ]/ [ 1~ cos(AgS)”

—tan™ [cos(A¢) sin(Ag) = ‘/2 cos(d4){1 — cos(84)} ]/{cos(Agﬁ)——cos?(M)}}

(44)

The minimum error occurs when the sign in front of the square root is positive while
for the maximum error, the sign is negative. The magnitude of one error is much larger
than the other. The larger error is determined by the sign of the phase imbalance. If the
phase imbalance is positive, the maximum error is larger than the minimum. For small
phase imbalance, the peak—to—peak error is slightly larger than the input phase imbalance.
This difference is bigger for larger phase imbalances. The RMS, mean and peak—-to—peak
phase errors are plotted in Fig-. 3(a), 3(b) and 3(c) respectively versus phase imbalance at

(44| =0°,0.55, 1.0°, 1.5° and 2.0° .

The maximum and minimum locations of the normalized instantaneous frequency
dcviation are found by differentiating Eq.(43) with respect to g_(t) and equating the result

to zero. After some manipulation, the maximum and minimum locations are found to be

a(t) =+ 1/4 - 44/2 (45)

Substituting Eq.(45) into Eq.(43) and simplifying, the maximum and minimum normalized
instantaneous frequency deviations are

Blaa(t)]/Aa ()] = cos(A¢){ 1+ [ [~ sin(44) = 1]/cos(a¢)] 2} /2 -1 (46)

For small phase imbalance (|44 < 90°), the numerator is always positive. The
maximum normalized instantaneous frequency deviation occurs when the absolute value of
[~ sin(A4) * 1] is maximum, i.e. when (A¢) is positiv~, then — 1 is chosen. When (44) is
negative, then +1 is chosen. If (A4) is negative, the reverse is true.

The peak-to—peak normalized instantaneous frequency deviation is plotted in Fig.4
versus |A¢] = 0°,0.5°, 1.0°, 1.5° and 2.0°.

5.0 DC OFFSETS ONLY (R=1andA¢=0)
With only DC offsets, Eq.(10) can be simplified to
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Si%t) + 53(1) = [a(t) K4 { 1+ faso/ (K21} + {age/[a(t)K /2
+ 2 aiof[2(t)Ki/2] cos[e_(t)] + 2 aqo/[a(t)Ki/2] sin(ao(t)]}

(47)
For a CW signal, the terms inside the braces are simply DC terms and fundamental
baseband frequency terms. The peak or null occurs at
(0,(0] pesk or mat = 087! | [aiof (a¥io+ a%o)]V? (48)

and the peak—to—peak ripple/mean ratio can be shown to be

Peak—to—peak ripple/mean = 4 | (a%,+ a%g)/ [a(t)Ki/Z}z} /a
/[ 1+ fai/laK/21Y + {aqo/ (K /2]

49)
The normalized peak ripple is only a function of the absolute value of the normalized
offsets and is plotted in Fig. 5. For small normalized offsets, the ratio is approximately
proportional to four times the normalized offseis added on a RMS basis.

From Eqs. (16) and (17), the phase error as 2 function of DC offsets only is
simplified to

aa(t) = tan 1{{ sinfa_(t)] + aqo/[a(t)Kq/2]]/[ cosfa_(t)] + aio/[a(t)Ki/Q]H —a(t)
(50)

The ncrmalized instantaneous frequency deviation given in Eq.(19) can be simplified
further to

Oaa(t)]/dla,(8)] = [ 1+ sinla, (1)] aqo/[a(t)Ka/2] + cosla, (V)] aso/[a(t)K/2]]
/ { 1+ [aqo/[B(0Ko/2]] + [aia/la(0Ks/2)]”
+ 2 sinfa, (1] aqo/[3(VK /2] + 2 coslag (1)} aso/(a(1)Ks/2] } -1
6

The maximum and minimum phase errors are obtained by setting Eq.(51) to zero
and yields
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[ssc/1a(K3/20) “+ [aqo/ a(1)Ka/21] + cosla, (0)] aio/[a(1)K/2]
+ sin [a,(t)] aqo/[3()K/2] = 0 (52)

After rearranging and squaring, we have
cos[a, ()] {[aqo/[aqu/m] + [aiofla(t),/2]) } + cosla, (1)) 22ie/[a(t)K1/2]
2 2
: {[aio/(a(t)Ka/ﬂ] + [3ao/l3()Ka/2] ]

* { [w/tatky/al)” + [soofla(t)ky/2] ’}’ - [awo/latoKy/21] = 0
(53)

Now Eq.(53) is in quadratic form and the solution can be obtained readily.
One solution will give the location of the minimum while the other will give the maximum.
From Eq.(50), if the sign of the DC offse! is reversed, the location of a (t) =0 will be

shifted by the same amount but on the opposite side. This will only change the relative
position of the ripples, not its absolute peak amplitude. As a result, the maximum and
minimum phase errors are only a function of the magnitude of both the offsets and thus
should be independent of the sign of the offset in each channel.

The zero—crossing point is obtained by equating the phase error of Eq.(50) to zero
and yields

a,{t) = tan I (aqo/Kaq) /(a10/Ky)] (54

There is only one zero—crossing over an input phase change of 180 degrees, and thus
the period of the phase error is the same as the input phase cycle.

The mean of the phase error is found to be zero for a signal with a constant envelope
and over an input phase change of 2r radians. The peak—to—peak phase error as a function
of DC offsets is plotted in Fig. 6. For small DC offsets, the phase error is approximately
sinusoidal in shape and the ratio of the RMS value to its peak—to—peak value is

approximately equal to 1/ (23/ ?). As the DC offsets get bigger, the maximum positive phase
error is no longer equal to the maximum negative one. However the ratio of the RMS value

to its peak—to—peak value remains approximately equals to 1/(2%¥ %),

The location of the maximum or minimum normalized instantaneous frequency
deviation is determined by taking another derivative of Eq.(50) with respect to the input
phase and equating the result to zero. The solution is found to be the same as given in
Eq.(54). As a result, the maximum and minimum locations coincide with the zero—crossing
points. From Eq.(54), we have
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sinfay(1)] = (aq0/K)/ [(a10/Ki)? + (a00/Ko)?] V2 (55)
and

cos{g(1)] = (aio/K3)/ 210/ K)? + (aqo/Ko)?] V2 (56)

The maximum or minimum normalized instantaneous frequency deviation is obtained
by substituting Eqs.(55) and (56) into Eq.(51). The resultant value is found to be only a
function of the square of the DC offsets. Therefore, the maximum and minimum deviations
are only a function of the absolute magnitude of the DC offsets.

The mean of the normalized instantaneous frequency deviation is also fornd o be
zero for a signal with a constant envelope and over an input phase change of 27 radians.
The RMS o? the normalized instantaneous frequency deviation as a function of DC offsets
is plotted in Fig. 7. For small DC offsets, the normalized instantaneous frequency deviation
is also approximately sinusoidal in shape and the ratio of the RMS value to its

peak—to—peak value is approximately equal to 1/ (23/ 2). However, the positive and negative
halves are not as symmetrical with raspect to the zero axis as for the phase error. This
non—symmetry is more pronounced for larger DC offsets.

6.0 AMPLITUDE IMBALANCE AND DC OFFSET ONLY

In this special case, we let ago = 0 and A¢ = 0.

With only the amplitude imbalance and in—phase channel DC offset, Eq.(10 } can be
simplified to

Si¥(t) + S3(t) = [a(t)K;)%/4 {[1 /2 + {aio/[a(t)Ki/2]}+ R’/z]

+ cosla, (1)) 2 ato/[a(t)Ki/2] + [ 1/2 cos [2a,(t)] - R¥/2 cos [2a_(t)] ]
(57

For an input CW signal, the AC ripple terms consist of the fundamental baseband
frequency as well as its second harmonic terms. By taking the derivative of the AC ripple
terms with respect to a_(t) and equating the result to zero, the locations of the maximum

and minimum are found to be at

ao(t)peak ornull =0and x 7 (58)
or .

(8) pesk or munt = cos°1{{aso/(a()Ky/2]}/(1 - R?) (59)

By substituting the peak and null locations back into the AC ripple terms, the
peak—to—peak value can be found and thus the peak—to—peak/mean ratio can be
determined. The AC ripples consist of both the fundamental and second harmonic terms of
the baseband frequency. As a result, the peak—to—peak and RMS values are no longer
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simply related by a constant as in the previous cases. However, the mean value of the
ripples is zero, and both the RMS and peak—to—peak values of the ripples are functions of
the absolute value of the offset. The peak—-to—peak/mean and RMS/mean values are
plotted in Figs. 8(a) and (b) respectively as a function of both offset and amplitude
imbalance.

Using Eq.(17), the phase error is now simplified to

aa(t) = tan { R sinfa(t)]/{cos[a,(t)] + aso/[a(t)K: /2]}} —a(t) (60)

Both the locations of the zero crossing and the maximum and minimum phase errors
are a function of both the amplitude imbalance and the DC offset. If one mismatch is much
greater than the other, we will have one of the special cases analyzed earlier. As can be
seen from Eq.(60) if the sign of the DC offset is reversed, only the relative position of the
distribution will be affected and both the RMS and peak—to—peak phase errors will remain
unchanged. The phase error is zero at a o(1:) = 0 and is also of odd symmetry with respect

to a_(t). The RMS and peak-—to—peak of the phase errors as a function of both the

amplitude imbalance and DC offset are plotted in Figs. 9(a) and (b) respectively. As
expected, the ratio of the RMS value to its peak—to—peak value is no longer equal to

1 /(23/ 2} as for a sinusoidal wave.

The normalized instantaneous frequency deviation as given by Eq.(19) can now be
simplified to

d[aa(t)]
m =R [ 1+ cos[ao(t)] aiof[a(t)K; /2]]

/ {{cos[ao(t)] + 210/ [a(t)K; /2]}2+ R? sin"’[ao(t)]} —1 (61)

As can be seen from Eq.(61), since the cosine function is periodic, a change in sign of the
DC offset will only change the location of the deviation, not its RMS nor peak—to—peak
values. As a result, both the RMS and peak—to—peak phase errors are only a function of
the absolute value of the DC offset. The mean value is found to be zero. In addition,
because the cosine function is even, the normalized instantaneous frequency deviation is
symmetrical with respect to e _(t) = 0. The RMS and peak—to~peak of the normalized

instantaneous frequency deviations as a function of both the amplitude imbalance and DC
offset are plotted in Figs. 10(a) and (b) respectively.

7.0 EFFECT OF TIME SAMPLING

So far the analysis has been carried out by assuming both the in—phase and
quadrature band—limited signals are processed by a continuous—time processor with
unlimited processing bandwidth. However, in practice the input signals are sampled,
quantized and processed by a discrete—time processor which has a finite bandwidth
determined by the Nyquist sampling rate (fsf. In a non—ideal I/Q demodulator where
there are imbalances and DC offsets, frequency components higher than those in the
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band-limited baseband signals can be generated. These higher frequency components are
generated by the non-linear operations of computing the power of the envelope and the
phase by taking the sum of the squares of the in—phase and quadrature signals and from
taking the inverse tangent respectively. As a result, there are differences betwen the two
processors on the demodulated envelope, phase and instantaneous frequency when these
higher frequency components are greater than the Nyquist sampling rate.

For a discrete~time processor, the analysis 15 carried out by replacing the continuous
time variable t by its discrete time event t,. If the maximum frequency of the processed
signal is higher than the Nyquist sampling rate, aliasing will occur[135]. The effect due to
aliasing can be simply illustrated by considering the case where the input sigral is a CW
signal and when there are only imbalances in the I/Q demodulator. Eq.(10) shows that
there will be ripples introduced on the envelope, which are at twice the frequency of the
baseband frequency (f). If 2f is greater than {;, then aliasing will occur in the discrete—time
processor and the frequency of the ripples will have a different component which is the
aliased one, given by (2f —f;).

If the instantaneous frequency of the signal, due to imbalances and DC offsets, is
greater than the Nyquist sampling rate, ambiguity can result in the determination of the
phase. In other words, the process of phase unwrapping can create errors if the phase
difference between consecutive phase points is greater than 180 degrees. When this
happens, the computed phase can fall in the wrong principal plane and the resultant
instantaneous frequency computed can be seriously affected.

In addition to the ambiguity problem, the instantaneous frequency is also degraded
by the problem associated with the approximation used in computing its value. In a
discrete—time processor the instantaneous frequency is approximately given by first taking
the difference between two contiguous phase samples and then dividing the difference by
the sampling interval [Eq.(7)}. T%xis approximation becomes worse as the modulation
frequency increases.

In a discrete—time processor, the normalized difference between the measured
instantaneous frequency due to imbalances and DC offsets and its input instantaneous
frequency is given by

8i(ta)/fs = 8a(ta)/(20) = [la(ta) = a{tn)] ~ (alta-) = a,(tn-)]]/(27)
(62

where the instantaneous frequency deviation has been normalized by the Nyquist sampling
frequency. The effect due to aliasing and approximation is a function of input signal
frequency, imbalances and DC offsets. Using a CW input signal, a few examples are used to

illustrate this effect. The imbalances and DC offsets used are R = 1.01, a¢ = 0.5°,
aio/(Ki/2) = 0.01 and aq0/(Ki/2) = 0.006. These are the RMS values taken from a
custom—matched I/Q demodulator[6] over an operating instantaneous bandwidth of 100
MHz. The RMS values are small and are obtained after a mean value has been removed
from each of the mismatch components. Different combinations of the four mismatch
components are used to illustrate four specific cases; namely (i) ~mplitude and phase
imbalance only, (ii) DC offsets only, (iiigeamplitude imbalance and DC offset only and
(iv) all four mismatches are present. The RMS and peak—to—peak normalized
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instantauneous frequency deviations as a function of imbalances and DC offsets versus
normalized signal frequency are plotted in Figs. 11 (a) and (b) respectively. For a given set
of mismatches, the instantaneous frequency deviation for a continuous—time processor
increases directly proportional to the baseband frequency as given by Eq.(18). However, as
can be seen from Figs. 11 (a) and (b), tke instantaneous frequency deviation for a
discrete—time processor is not monotcaically increasing with frequency. Depending on the
relative values of the imbalances and DC offsets, the instantaneous frequency deviation
may peak before the signal frequency reaches the sampling frequency. In the case where
there are small amplitude and phase imbalances only, the period of the phase error is
essentially half of that of the input phase cycle. As a result, when the baseband frequency
is half that of the sampling frequency, the phase error is approximately the same at every
sample point. Therefore the resultant instantaneous frequency deviation as given by
Eq.(62) will be zero and thus the approximation used in deriving the instantaneous
frequency actually reduces the effect due to the mismatches. For other combinations of
imbalances and DC offsets, the net effect due to aliasing and approximation is more
complex and their values as a function of frequency are shown by the other curves in the
Figures.

To facilitate the comparison between the continuous—time processor and a
discrete—time processor, Eq.(62) is multiplied by fs/f to yield

af(tn)/£ = /1 [a(ta) = 0, (ta)] = [a(tn) = a,(ta-0)]] /(22)
(63)

where the total instantaneous frequency deviation has been normalized by the input
baseband carrier frequency (f). With this normalized expression, it can be compared
directly with the normalized instantaneous frequency deviation [de(t)/da (t)] for a

continuous—time processor. The normalized RMS instantaneous frequency deviation for the
same sets of imbalances and DC offsets are plotted in Fig. 12. The normalized RMS
instantaneous frequency deviations at f/fs = 0 are identical to those from a
continuous—time processor. The normalized instantaneous frequency deviation decreases
with input frequency as shown, while for a continuous—time processor it is independent of
input signal frequency. As a result, the normalized instantaneous frequewcy deviation for a
discrete—time processor is always less than that of a continuous—time processor and this
error is also decreasing with input frequency.

8.0 REDUCTION OF SYSTEMATIC ERRORS BY LOW-PASS FILTERING

The effects of imbalances and DC offsets on the envelope, phase and instantaneous
frequency have been addressed. For a number of specific cases where two out of four
possible mismatch components are present, a full characterization has also been given. In
the genera! case, when all the mismatch components are present, the analysis can be more
complicated. However, there are some general conclusions which can be made on the
distortions introduced by the mismatches on input CW signals. For both the envelope in
terms of peak—to—peak—ripple/mean and the normalized instantaneous frequency
deviation, the mean is always zero over an input phase range of 27 radians. On the other
hand, the mean for the phase error is not zero.
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For an input signal of constant amplitude, the distortions on the envelope produce a
DC (bias) component which is only a function of the DC offsets and amplitude imbalance.
In addition, a combination of sinusoidal components can also occur with periods equal to
one and one half of the input phase cycle The bias due to DC offsets can also reduce the
dynamic range of the demodulator. On the phase error, there are also a bias and AC
components with periods equal to one and one half of the input phase cycle. There are also
AC components with periods equal to one and one half of the input phase on the
instantaneous frequency deviation, however there is no bias. As the magnitudes of the
imbalances and DC offsets increase, the AC components for both the phase error and
instantaneous frequency deviation will depart further from a sinusoidal waveform.

Two examples are used to show the frequency spectral distribution of the distortion
as a function of imbalances and DC offsets. A CW baseband signal at a normalized
frequency (f/fs& of 0.05 and with a power of 0 dBm in a 50~Ohm system is used. The
distortions on both the envelope and instantaneous frequency due to the imbalances and
DC offsets are then calculated. 1000 sample points taken on the distortions are used for the
discrete Fourier transform. The frequency of the CW signal is chosen so that minimal
aliasing and leakage can occur. The normalized one—sided spectral distributions on both
the envelope and instantaneous frequency are plotted in Figs. 13 and 14. The spectral
distribution on the envelope is normalized by the power of the undistorted envelope and is
then expressed in dB. The instantaneous frequency deviation is normalized by the Nyquist
sampling rate and the ratio is also expressed in dB [10- LOG o(Af/f5)]. The spectral
distributions plotted in Fig.13 are obtained by using typical mismatch values from a
custom—matched I/Q demodulator[6] while in Fig. 14, the mismatches are increased by a
factor of ten. As expected, there are only three spectral components on the envelope
distortions due to the mismatches; namely the DC component and the fundamental and
second harmonics of the baseband frequency. For the normalized instantaneous frequency
deviation, there is no DC component. For small imbalances and DC offsets, only the
fundamental and second harmonic frequency components are present. For larger
mismatches, other higher harmonics also occur.

As can be seen from Fig. 13, the distortions on the envelope are very small and are
quite acceptable for EW applications. From Fig. 11, the instantaneous frequency error is
quite small when the input baseband frequency is low. However, as the signal frequency is
increased, the instantaneous frequency deviation also gets larger. This relatively large
instgn;aneous frequency error may not be acceptable and some improvement may be
needed.

As discussed earlier, for EW applications the video or modulating bandwidths of
both the envelope and instantaneous frequency are usually small in comparison to the
instantaneous frequency bandwidth of the I/Q demodulator. In addition, as shown in Fig.
13, the distortions are usually made up of frequency components which are harmonics of
the baseband signal frequency. As a result, when a signal is down—converted to a high
baseband frequency low—pass filtering can be effectively applied to reduce the high
frequency components of the distortions. Another advantage of reducing the video
bandwidth by low-pass filtering is a reduction in the effective noise bandwidth[14] which
will result in an improvement on the output signal-to—noise ratio. In other words, the
effective noise bandwidth of an I/Q demodulator is a function of both its instantaneous
bandwidth and its video bandwidth.
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Simple low—pass filtering can be carried out in the time domain by using 2 moving
average. It is carried out by adding N contiguous samples and an average is taken on the
accumulated sum. The same operation is repeated on the next N samples. The transfer
function is given by|[9]

H(f)/N = sin(NxfT,)/ [N sin(rfTs)] exp [ —(N - 1)fT, | (64)

The absolute value of the transfer function is plotted in Fig.15(a) for various values
of N. As can be seen from the plot, the operation of moving average on the sampled,
processed data has the same effect as low—pass filtering in the frequency domain. In
addition, the moving average is easy to implement digitally and is of linear phase response
which does not introduce distortions such as ringing and overshoot as for some other types
of filters [15]. As given in Fig. 15(a), the sidelobe levels are determined by Eq.(64) as a
function of N. For large N, the first peak sidelobe level is 13.46 dB down and the peak
sidelobe level decreases directly proportional to 1/f. If it is desirable to have lower sidelobe
levels, a multi—ayer moving average can be performed. Fig.15 (b) shows the resultant
effect when two layers are used. In this case the data is filtered by a moving average of
N = 3 and followed by N = 4. Moreover, if more stringent requirement is needed, FIR
filters with generalized linear phase can easily be designed [9]. The tradeoff is the increased
complexity in hardware implementation.

Two examples are given to illustrate the effectiveness of low—pass filtering. A linear
FM signal centered at a baseband frequency of 25 MHz (f/fs = 0.25) with a total frequency
excursion of 5 MHz is used. The pulse width is 1 s with rise and fall time constants of
0.02 ps. The power of the envelope and instantaneous offset (from the LO frequency)
frequency of the signal are plotted in Fig. 16. At the very beginning and end of the pulse,
there is an abrupt change in the phase of the signal which shows up as a spike in the
instantaneous frequency. As the instantaneous irequency inside the pulse varies, the
frequency of the ripples will also vary as shown. In the first half of the pulse, the frequency
components of the ripples which mainly composed of the first and second harmonics of the
baseband frequency are less than half the Nyquist sampling frequency. In the second half of
the pulse, the frequency of the second harmonic exceeds the Nyquist sampling frequency
and as a result, aliasing will occur. Fig. 17 shows the result after two layers of moving
average are applied. Since the modulating bandwidth of the linear FM signal is much less
than its baseband carrier frequency, low—pass filtering can be effectively used to attenuate
the ripples with minimal effect on the demodulated envelope and instantaneous frequency.
It is noted that both the leading and trailing edges of the pulse are slightly rounded due to
low—pass filtering. In a practical system, adaptive low—pass filtering with different degrees
of smoothing can be applied to different parts of the pulse to minimize this type of
distortion. In this case, if it is desirable to retain the high frequency components of the
demodulated information at both the leading and trailing edges, then no low—pass filtering
should be applied near either the leading or trailing edge.

9.0 SUMMARY AND CONCLUSIONS

The effects of imbalances and DC offsets in an I/Q demiodulator for the
demodulation of radar signals have been analyzed in this report. Three normalized
parameters, namely the peak—to—peak—ripple to mean, phase error and normalized
instantaneous frequency deviation have been used to characterize the systematic errors on
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(a) Single Layer

Figure 15 Transfer Function of Moving Average
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NORMALIZED FREQUENCY (1/Ts)

(b) Two Layers

Figure 15 Transfer Function of Moving Average
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the demodulated envelope, phase and instantaneous frequency respectively. These
parameters are evaluated as a function of imbalances and DC offsets over an input phase
range of 2r radians.

When there are imbalances and DC offsets in the I/Q demodulator, the power of the
envelope is found to be a product of the undistorted envelope term and other terms which
are generated by the imbalances and DC offsets. When the amplitude of the input signal is
constant, distortions in the form of a DC (bias) component is produced on the envelope and
this bias is only a function of DC offsets and amplitude imbalance. In addition, a
combination of sinusoidal components with frequencies equal to the fundamental and
second harmonics of the baseband signal frequency can also occur. The bias due to DC
offsets can also reduce the dynamic range of the demodulator. On the phase error, there are
also a bias and AC components with periods equal to one and one half of the input signal
phase. Similarly, there are also AC components on the instantaneous frequency deviation,
however, there is no bias. As the magnitudes of the mismatches increase, the AC
components for both the phase error and instantaneous frequency deviation will depart
further from a purely sinusoidal waveform.

In a discrete~time processor, the input signals are sampled, quantized and processed
with a finite bandwidth which is limited by the Nyquist sampling rate. In a non—ideal I/Q
demodulator where there are imbalances and DC offsets, frequency components higher than
the Nyquist sampling rate can be generated by the non—linear operations of computing the
power of the envelope and its phase. As a result, aliasing can occur and large errors can
also result in the determination of the phase. Another factor which can affect the
instantaneous frequency measurement is the approximation used by taking the difference
between two contiguous phase samples and then dividing the difference by the sampling
interval. The effect due to aliasing and approximation is a function of input signal
frequency, imbalances and DC offsets. For a given set of imbalances and DC offsets, the
instantaneous frequency deviation for a continuous—time processor increases directly
proportional to the baseband frequency. However, the instantaneous frequency deviation
for a discrete—time processor is not monotonically increasing with frequency. Depending on
the relative values of the imbalances and DC offsets, the instantaneous frequency deviation
may peak before the frequency reaches the sampling frequency. As a result, the
instantaneous frequency deviation in a discrete—time processor is always less than that of a
continuous—time processor.

In EW applications, the video or modulation bandwidth of the signal is usually small
in comparison to the instantaneous frequency bandwidth of the I/Q demodulator. As a
result, when the signal is down—converted to a baseband frequency which is larger than the
modulation bandwidth, the frequency components of the distortions can be reduced by
low-pass filtering. The technique of using a moving average has been shown to be effective
to attenuate the ripples caused by the mismatches and with minimal effect on both the
demodulated envelope and instantaneous frequency.
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